HPLC Application

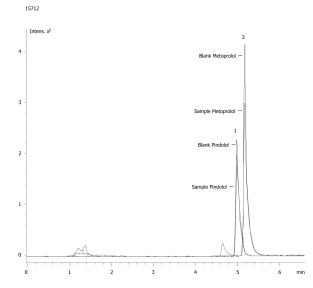
Protein Precipatation vs. Ion Suppression of Medium Polar Drugs on strata Impact Square Well Plate

Column:	Gemini® 3 µm C18 110 Å, LC Column 150 x 3 mm, Ea				
Dimensions:	150 x 3 mm ID				
Order No:	00F-4439-Y0				Gemini
Elution Type:	Gradient				
Eluent A:	0.1% Formic acid/Water				
Eluent B:	0.08% Formic acid/Acetonitrile				
Gradient	Step No.	Time (min) Pct A	Pct B	O C
Profile:	1	0	90	10	
	2	5	50	50	
	3	7	50	50	Products used in this application:
Flow Rate:	0.5 mL/min				
Col. Temp.:	ambient Mass Spectrometer (MS) @ 249 amu (ambient)				
Detection:	Mass Spectrometer (MS) @ 249 amu (ambient)				
Analyst Note:	Protein Precipitation Protocol: Phase: Strata Impact Square Well Plate, 2 mL (CEO-7565) 1. Dispense 300 uL acetonitrile into each well using an automatic pipettor. 2. Place the protein precipitation plate onto a suitable 96-well vacuum manifold . Make sure that a 96-well collection plate is positioned inside the manifold to collect the filtrate. 3. Dispense 100 uL of Porcine plasma into each well (acetonitrile:plasma = 3:1). Let it stand for 2 mins (no vortex /mixing required). 4. Apply 5-10" of mercury for 30-40 secs. 5. Collect the filtrate and blow down to dryness under slow stream of nitrogen @ 40 deg. C. 6. Reconstitute with 100 uL of mobile phase containing 10.0 ng of analye. Note: For ion suppression or enhancement estimation, a set of 4 blank (100 uL of water instead of plasma) was run in parallel. Observation: Filtrate looked very clean and clear Results: Analyte logP m/z % Variation Effect				
	1. Pindolol 1.75	249	15%	Suppression	
	2. Metoprolol 1.8	8268	13%	Suppression	

©2025 Phenomenex Inc. All rights reserved.

Phenomenex products are available worldwide.

www.phenomenex.com


For more information contact your Phenomenex Representative at support@phenomenex.com

HPLC Application

Protein Precipatation vs. Ion Suppression of Medium Polar Drugs on strata Impact Square Well Plate

ANALYTES:

- 1 Pindolol
- 2 Metoprolol

©2025 Phenomenex Inc. All rights reserved.

Phenomenex products are available worldwide.

www.phenomenex.com

For more information contact your Phenomenex Representative at support@phenomenex.com